

Common Ion Effect

Objectives

- Determine solubility of KHT in a solution.
- Investigate effect of common ion on KHT solubility.
- Determine K_{sp} for KHT.

Solubility Equilibria

- Solubility Rules qualitative prediction about solubility
- Solubility Expression quantitative prediction about solubility or, how much will dissolve)
- The solid component is in equilibrium with the dissolved ions. $BaSO_4$ (s) $\Rightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$
- Solubility Product Constant, K_{sp} similar to other equilibrium expressions (K_c, K_a, etc.)

$$K_{sp} = [Ba^{2+}] [SO_4^{2-}]$$

Solubility – quantity that dissolves to form a saturated solution.
 O Units are g/L or mol/L.

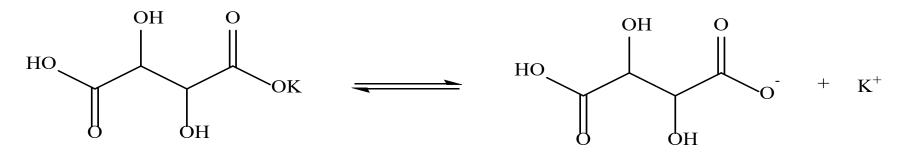
$K_{\mbox{\scriptsize sp}}$ and Solubility

- K_{sp} remains constant with constant temperature.
- Solubility is affected by pH and concentration of other ions.

The Common-Ion Effect

Solubility of a slightly soluble salt is *decreased* by presence of second solute with a common ion (F⁻ions, in the example, below)

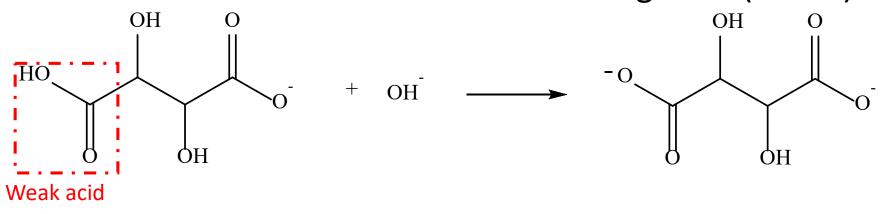
$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + F^{-}(aq)$$


• Addition of NaF (F - ions) to a solution of CaF₂

 \circ Shifts the equilibrium to the ← LEFT, forming more CaF₂ \circ Reducing its solubility; hence, precipitation)

Potassium Bitartrate (KHT)

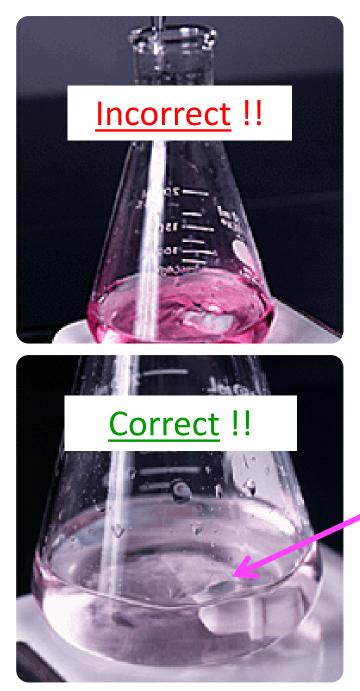
- Today, we will study the solubility of *KHT*, a slightly soluble salt, a.k.a., *Cream of Tartar* (a by-product of winemaking ; used in baking powders).
- We will calculate K_{sp} in the presence of varying concentrations of a common ion.


KHT (s) \rightleftharpoons K⁺ (aq) + HT⁻ (aq)

 $K_{sp} = [K^+] [HT^-]$

Potassium Bitartrate, cont.

- To solve for K_{sp} , we need [K⁺] and [HT⁻]
- HT⁻ is a weak acid. We will titrate it with a strong base (NaOH).



$$HT^{-}(aq) + OH^{-}(aq) \rightleftharpoons T^{2-}(aq) + H_{2}O(l)$$

At the equivalence point,

moles OH⁻ = moles HT⁻ and moles HT⁻ = moles KHT

... which will lead you to solubility of KHT

Question: How does one know when the equivalence point is reached?

Answer: Use an acid-base indicator!

Phenolphthalein

 Ouse 2-3 drops only
 Ocolorless in acidic solutions
 Pink in solutions pH ≥ 8

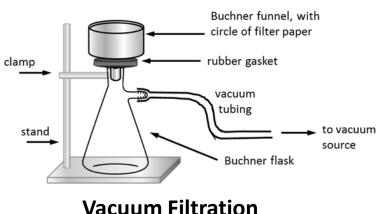
Faint pink color

The point where the indicator changes color is called the *end point* and is the approximation of the *equivalence point*.

Procedure : Step 1

- Nine (9) possible mixtures of KCl and NaCl
- See TA for your assigned mixture

 Each pair will make 2 mixtures !!!
 ALL mixtures must be chosen !!!
 - No more than 3 pairs of students can use the same mixture!


Mixture	0.1 M KCl (mL)	0.1 M NaCl (mL)
1	0	100
2	20	80
3	30	70
4	40	60
5	50	50
6	60	40
7	70	30
8	80	20
9	100	0

Procedure, cont.

- Perform vacuum filtration
- Use 2 burets (label both!)
 - \circ Buret 1 KHT solution
 - Use to measure 25.0 mL into an Erlenmeyer flask.
 - Record exact volume!
 - \circ Buret 2 NaOH solution
 - Use for titration to add the KHT to the Erlenmeyer flask which contains 2-3 drops of phenolphthalein indicator.
- Do three titrations for every mixture

Before leaving lab, see your TA and enter the following into the Excel spreadsheet on the lab computer:

- Names
- O Mixture #
- Volume KHT
- o Volume NaOH

Hazards and Waste

• Dispose all the solution in the Aqueous Waste container