

Equilibrium and Le Chatelier's Principle

Objectives

- To determine extinction coefficient for [FeSCN]²⁺ and [CoSCN]²⁺
- To calculate equilibrium concentrations
- To calculate the equilibrium constant, K_c
- Explore LeChatelier's Principle

Chemical Equilibrium

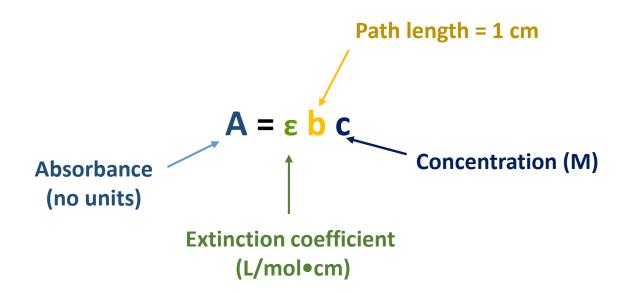
- The state where the concentrations of all reactants and products remain constant with time.
- At equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction.

 $aA(aq) + bB(aq) \rightleftharpoons cC(aq) + dD(aq)$

Equilibrium constant K

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Equilibrium does NOT depend on the amount of pure solids or pure liquids.



Absorbance and Beer's Law

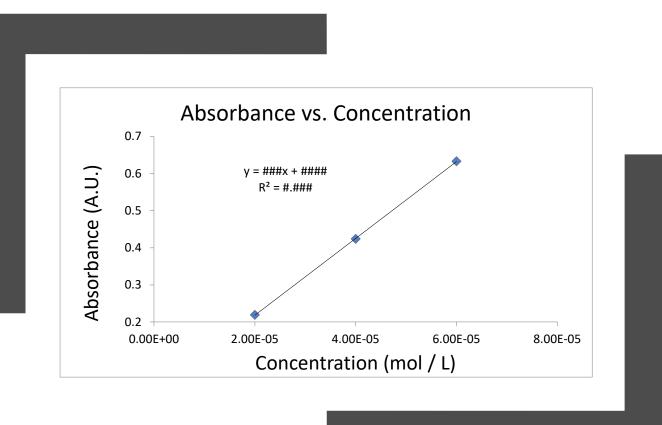
• Absorbance

Amount of light absorbed by a particular species

- Beer's Law
 - Relates **absorbance to concentration**

The plot of absorbance vs. concentration is linear and the slope is equal to ε b.

Part A: Determining Extinction Coefficient and Equilibrium Concentrations


• 1st reaction: complex ion formation

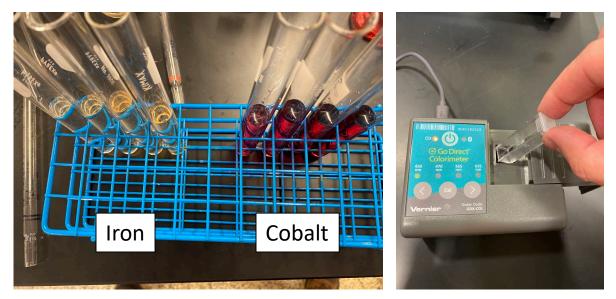
$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [FeSCN]^{2+}(aq)$$

• 2nd reaction: Complex ion formation

 $Co^{2+}(aq) + SCN^{-}(aq) \rightleftharpoons [CoSCN]^{2+}(aq)$

Part A: Determining ε and Equilibrium Concentrations (cont'd)

- Use the dilution equation to calculate [FeSCN]²⁺ and [CoSCN]²⁺.
 - \circ (See tables in the procedure)


Conc._(start) x Volume_(start) = Conc._{((final)} x Volume_(final)

- Plot
 - Absorbance vs. [FeSCN]²⁺
 - \circ Absorbance vs. [CoSCN]²⁺
- Find the Extinction coefficient ε for each reaction

LabQuest 3 Colorimeter

 Use 470 nm (Blue) LED for both the Iron and the Cobalt Reaction

• Samples go in *cuvettes*

- These cost money and can be damaged so handle carefully
- Each group should only need one *Cuvette* that you will pick up at the back lab bench
- Use ONE KimWipe tissue to dry cuvettes and/or remove fingerprints
- Make sure the arrow ◀ is pointing through the clear side of the cuvette and not the side with the ridges.
- Use the glass pipettes to prepare your samples.

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Part B: Determining K_c

- Clean your pipet with DI water.
- Record absorbance for all 7 solutions:

 \odot 3 at room temperature and 4 at ice bath temperature

- Use $\boldsymbol{\epsilon}$ from the previous graph to calculate [FeSCN²⁺]_{eq}
- Use the Table & $M_1V_1 = M_2V_2$ equation to find $[Fe^{3+}]_{initial}$ and $[SCN^{-}]_{initial}$
- Use ICE table to find $[Fe^{3+}]_{eq}$ and $[SCN^{-}]_{eq}$
- Plug values into the equilibrium expression to find K_c

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

ICE Table

Initial – Change – Equilibrium

WRITE THIS DOWN NOW !

	Fe ³⁺	SCN ⁻	[FeSCN] ²⁺
Initial conc. (mol L)	Determined using $C_1V_1 = C_2V_2$		0.00
Change (mol/L)	Related to the stoichiometry of the balanced equation		Difference between Equilibrium and Initial values
Equilibrium (mol/L)	Difference between Initial and Change values		Calculated using ɛ and absorbance measurements

$A + B \rightleftharpoons C$

Part C: Le Chatelier's Principle

- A system will shift equilibrium position when disturbed to counteract the effect of the disturbance.
- Potential Disturbances
 - Change in component concentration
 - Change in temperature
 - Change in pressure
- Today's experiment will use solutions of cobalt(II) chloride. The shift in the **equilibrium** is accompanied by a change in color.
- The reaction of hydrated cobalt (II) ion and hydrochloric acid

 $\begin{array}{rcl} \text{Co}(\text{H}_2\text{O})_6^{2+}(\text{aq}) &+ & 4 \text{ Cl}^-(\text{aq}) \rightleftharpoons & \text{Co}\text{Cl}_4^{2-}(\text{aq}) + 6 \text{ H}_2\text{O}(\text{I}) \\ \hline & \text{Light pink} & \text{Purple/blue} \end{array}$

Hazards and Waste

- Be very careful when using concentrated HCl. It will VAPORIZE so keep it in the fume hood so you do not inhale it.
- All waste should be placed into Aqueous Waste Container.